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Lockheed F-16 .  Let’s talk about the F-16, one of my all-time favorite air-
craft. The Viper was “born” in the same year as I was, 1974, and today, with 
over 2,000 flying and continued production, is still the world’s most widely 
used fighter jet. Single engine, single seat, single tail, and just overall abso-
lutely beautiful. In 2017 I had the opportunity to get to know one personally 
at Nellis Air Force Base. A few months earlier I received an email from one 
of my listeners, Lt Col Jan Stahl, which basically said “Hey Markus, I am 
working for the US Air Force, flying the F-16 as an aggressor at Nellis. If you 
ever happen to be in the area, you are welcome to visit the base, check out 
the airplane, and maybe record a podcast.” That’s the kind of listener initia-
tive I love, and of course I made sure that I was “in the area” a few months 
later. Let me tell you: it’s quite cool to sit in the cockpit of an F-16 while an 
F-15 taxis past majestically a few meters away. While I was in the US I also 
visited NASA Armstrong Flight Research Center at Edwards Air Force Base, 
the place where much of the military flight research that I was so fascinated 
by as a child and teenager was conducted. Hallowed ground for an “avgeek”: 
a wonderful week. But I digress. 

The F-16 is a relaxed-stability airplane: it is intentionally designed to be un-
stable. More specifically, it has slightly negative static stability and negative 
dynamic stability. This is useful for a fighter aircraft because you want it to 
be highly maneuverable. Say you want to fly a turn. Because of negative dy-
namic stability, you basically just have to start a roll “oscillation”, and it will 
accelerate, making the roll very quick. Once you get to the desired roll angle 
you actively stop the oscillation. Because of its relaxed static stability, there is 
no tendency to roll back to zero degrees bank―it will stay in whatever atti-
tude you’ve put it in.  

How do you make an aircraft unstable? We previously saw that a short tail 
leads to directional instability. Making an aircraft “tail-heavy” also helps. 
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In the illustration above the left part shows a stable aircraft: the center of 
gravity is in front of the center of lift, the (imaginary) point at which the wing’s 
lift connects to the aircraft. This keeps the nose down, slightly accelerating 
the aircraft. As the AoA increases, the center of lift moves forward, which is 
a fundamental characteristic of lift-generating airfoils. It’s not a problem if 
your center of gravity is sufficiently forward, as it will remain in front of the 
centre of lift and work to move the nose down; this arrangement of CoG and 
CoL is stable: it counteracts a pitch-up movement. But if the CoG is even 
slightly behind the CoL, increasing AoA means that the CoL will move fur-
ther forward, which, because of the increasing moment arm, leads to an even 
more increasing AoA. This positive feedback causes instability. 

An unstable airplane, especially one that is seriously unstable, is not manually 
controllable by a pilot, especially at high speeds. And the real job of a fighter 
pilot is to focus on the tactical situation and the mission rather than on the 
mechanics of flying. This is where flight control computers come into the 
picture. Even if the pilot keeps the stick centered, the controller actively ac-
tuates the various control surfaces to prevent divergent oscillations. I read 
somewhere―I can’t find the reference anymore, so take this with a pinch of 
salt―that the F-16 self-destructs from these oscillations within one second if 
the flight control system fails. To avoid this fate the flight control system has 
lots of redundancy in its computers, and is supplied by five different power 
sources, including batteries, the emergency power unit and the F-16’s regular 
electrical buses. 

The F-16’s flight control system processes two sets of inputs: data about the 
current state―attitude, speed, plus various data about the airstream, such as 
angle of attack, side-slip angle, total pressure and total temperature―as well 
as the pilot’s input about how he wants this state to change, as expressed 
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through stick and rudder. It then computes appropriate deflections of the el-
evator, aileron, rudder and flaps to effect this change. There is no direct con-
nection between the pilot’s controls and the control surfaces―it is all medi-
ated by a computer. A computer is fast enough to create artificial stability in 
an unstable aircraft. 

This kind of flight control system is called fly-by-wire, because electrical wires 
are used instead of cables, rods and cranks to pass signals to the hydraulic 
actuators that drive the surfaces. But maybe it should be called fly-by-com-
puter, because it’s probably more important that there’s a computer between 
the inputs and the surfaces to interpret the pilot’s commands in light of the 
current flight state. The F-16 was the first operational fighter that used fly-
by-wire, which contributed to its exceptional maneuverability. Today all 
fighters use this approach. Many of the newer ones have additional control 
surfaces: for example, the Eurofighter has canards, little wings at the front of 
the fuselage, while the F-22 has thrust-vectoring nozzles, both intended to 
help with high-AoA flight. It would not be feasible for the pilot to manually 
use these additional controls effectively: an integrated computer-based flight-
control-system is essential. 

The fly-by-wire system ensures that the pilot experiences a stable airplane. In 
fact, he experiences an airplane that is much more stable than a traditional 
one would be, while at the same time being extremely agile. Jan recalls: “One 
thing that hit me about the F-16 from the get-go is how easy it is to learn and 
how easy it is to fly compared to any other platform that I flew previously.” 
Jan transitioned to the F-16 from the non-fly-by-wire F-15. Of course, even 
in non-fly-by-wire aircraft like the Eagle, the stick and pedals are not con-
nected directly to the control surfaces by wires, rods and cranks, because the 
aerodynamic forces are much too great for a pilot to be able to move the 
surfaces manually. As in the F-16, they are hydraulically actuated, but the 
valves that control the hydraulics are themselves controlled by cables, making 
the deflection of the control surfaces directly proportional to the pilot’s input. 
No electrical signals and computers are involved in the primary flight con-
trols, although there is one involved in the automatic trim system of the F-15.  

In traditionally-controlled aircraft like my ASG-29 the pilot can feel the state 
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of the aircraft to some degree. For example, when I fly faster the stick be-
comes heavier to move, because the aerodynamic forces required to move 
the surfaces become greater. As I slow down towards the minimum speed, 
the stick becomes “wobbly”; when I approach stall the stick starts shaking a 
bit, because the buffet created by the wing’s separating airflow strikes the el-
evator. My reptile brain uses these cues a lot when controlling the aircraft, 
but if you have no direct ”connection to the air” this feedback loop is not 
available. Aircraft like the F-15 therefore have artificial feedback systems, es-
sentially springs on the stick that are preloaded with a force that is propor-
tional to airspeed. Transport aircraft have stick shakers that indicate an ap-
proaching stall. The F-16 has no such feedback at all. Jan: “In the F-16 the 
buffet cues are mostly absent, so you grow very reliant on displays that pre-
cisely indicate the state the jet is in.” In fact the stick did not move at all in 
the original F-16, it only sensed the force that the pilot applied to it. Pilots 
didn’t like this, because, in addition to stick force, the stick’s position also 
provides important feedback for a pilot’s subconscious flight control algo-
rithm. General Dynamics subsequently changed it and the stick now moves 
a few millimeters, but there is still no force feedback. 

Since the computer has a say in the translation of the pilot’s inputs to what 
the control surfaces do, it might as well prevent the pilot from doing stupid 
stuff, such as trying to increase AoA over what the wing is capable of, or 
stressing the aircraft beyond the g-limit it can tolerate. Such protections are 
common in all fly-by-wire aircraft. Jan: “It is much easier to perform the F-
16 to the maximum capability of the flight envelope than it is a jet like the F-
15, because I really don’t need to think about it. All I need to do is to pull on 
the stick: if the computer calculates that in the current state I can get to 9 g it 
will get me to 9 g and it will stay there, as long as the aerodynamics permit. 
In the F-15 it was a much more complex process in the sense that I had to 
check my airspeed, and based on the airspeed I had to essentially forecast 
how much g is available, and if I know that g-available is higher than the 
maximum g the airframe can permit, I have to make sure that I’m not pulling 
my stick all the way back. I have to pull a little bit slowly to a more restrictive 
position, until my g-available becomes less than my g-allowable, at which 
point I can bring the stick all the way back.” To help the pilot, the F-15 has 
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an Overload Warning System, which sounds beepers in the pilot’s headset to 
indicate what proportion of g-allowable the pilot is pulling: 91–94% is de-
noted by a single-rate beeper, 95–97% by a double-rate beeper, and 98–
100% by a solid tone. Beyond 100% a voice annunciation system (tradition-
ally called “Bitchin’ Betty”) tells the pilot “Over-G, Over-G”. In my glider 
there are no protections: if I fly at 250 km/h and pull the stick fully back, 
something will break―probably the elevator. You just don’t do that, just as 
you don’t jerk the steering wheel all the way to the right at 200 km/h on a 
German autobahn.  

We will look at the workings of a fly-by-wire system in more detail below, but 
before we do I want to differentiate the flight control system from other au-
tomated systems in the cockpit. It’s important to realize that in fly-by-wire 
aircraft you still manually control the aircraft’s speed, altitude, heading, bank 
angle or g-level. It’s just that you don’t fly the unstable and hard to control 
physical airplane, but instead a more stable, more care-free “artificial” air-
plane that is simulated by the flight control system.  

Autopilots are different, and they have existed since well before fly-by-wire 
systems. The simplest forms just maintain aspects of the current attitude: al-
titude hold, airspeed hold, heading hold. Once you have manually put the 
aircraft into a particular state, the autopilot holds it for you. This is very useful 
if you have to fly long straight legs. The SR-71, on its Mach 3 cruise, used 
basically such a system. More advanced autopilots can also make changes to 
the flight state. For example, in modern airliners you can dial in headings, 
speeds, altitudes and rates of climb and descend and the aircraft will “get you 
there”. Today’s autopilots can also fly towards a radio beacon or towards a 
GPS location, or fly “down” an instrument approach. Since we mentioned 
Bitchin’ Betty above, I should probably mention that the autopilot is tradi-
tionally called George.  

Airliners also use what is called a flight management system. This allows pi-
lots to plan their complete route, with multiple waypoints, speeds and alti-
tudes, taking weather and fuel consumption into consideration. The aircraft 
will then fly the route automatically. The autopilot is part of the flight man-
agement system. Today, flight management systems also have various forms 
of datalink, such as ACARS, to allow for remote monitoring by an airline’s 
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maintenance department. Pilots interface with all this through a set of dis-
plays, keyboard and the like. In Airbus aircraft, for example, this system is 
called the Multi-function Control and Display Unit. It also provides access to 
“systems pages” that allow pilots to monitor and control many of the other 
systems on a large aircraft, such as fuel―which might have to be pumped 
between tanks during a flight to manage the center of gravity―the electrical 
systems or the hydraulics.  

 Military aircraft have systems that are similar to a flight management system, 
usually called a Mission Management System. This also takes care of weap-
ons and other stores, integrates the various sensors (typically radar or infra-
red) and supports the pilot in aiming and releasing weapons. For data ex-
change, NATO aircraft use Link16, a networking system that allows fighters 
to exchange sensor data, or an AWACS to “push” the big picture to the fight-
ers. However, these are separate systems and are not technically part of the 
mission management system. 

 

 
 

None of this is related to whether or not an aircraft uses fly-by-wire. Tradi-
tionally the autopilot used servo motors to control the wires, rods and cranks 
that operated the surfaces. For example, a 747-400 has a modern flight man-
agement system with all the “fly-me-there” automation on top of an aircraft 
that uses conventional cables to connect the cockpit controls to the hydraulic 
actuators that deflect the control surfaces. Similarly, an aircraft can have a 
glass cockpit (screens instead of “steam gauges”) even if it does not feature a 
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fly-by-wire control system. 

A final word about automation. There is an ongoing discussion in the com-
mercial pilot community about how much automation is too much. There 
are several arguments here. One is that if pilots only “dial in” altitudes, head-
ings and speeds, and routinely let the aircraft land automatically, they might 
lose their manual flying skills. This is certainly true―practice makes perfect, 
and lack of practice is bad. On the other hand, it is probably a good thing if 
pilots get help from automation if they have to land an aircraft in adverse 
weather after a long and fatiguing transatlantic flight. A second argument, 
however, concerns the transparency of the system. As long as everything 
works, “magic” is fine. But when things start to fail, it is often crucial for pilots 
to understand the interdependencies between systems to be able to diagnose 
problems correctly and react appropriately. If you read the training manuals, 
there is indeed a lot of mode- or fault-dependent behavior: “If X happens, 
then Y is no longer done automatically”, where X and Y are functionalities 
that are not obviously related. Instead, the dependency stems from details of 
the underlying system. For example, two functionalities might run on the 
same computer. Understanding these dependencies certainly takes a while. 
In the end, an accident is always a combination of several causes―the fa-
mous Swiss cheese model in which all the holes have to align to lead to a 
catastrophic outcome. One of the holes can certainly be lack of practice, or 
the lack of understanding of a complex system. We will return to this problem 
after we have discussed how fly-by-wire systems work. 

 ~   ~   ~ 

Airbus A320.  The Airbus A320 is one of the most successful airliners in 
history; only the 737 has sold better than the A320 and its brethren, the 
shorter A318 and A319 and the longer A321. The A320 family was also the 
first commercial fly-by-wire airliner. The A320 is not dynamically unstable, 
so its reasons for employing fly-by-wire are different. First, a fly-by-wire sys-
tem is lighter than cables and cranks, which saves fuel over the lifetime of the 
aircraft. Second, if you have ever looked into the wheel well of a traditionally 
controlled airliner, you will probably agree that it is a benefit if you can get 
rid of the mechanical complexity of the control cables; they produce quite a 
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bit of maintenance effort. The primary driver for fly-by-wire systems in air-
liners is safety: assuming that you can build a reliable fly-by-wire system, it 
can provide lots of protection mechanisms and benign flight characteristics, 
similar to the F-16’s just-pull-and-I-will-give-you-appropriate-g-levels feature 
Jan mentioned earlier. A secondary reason is family commonality: because 
the system simulates a virtual aircraft, you can simulate the same virtual air-
craft for several real aircraft types. In other words, the A318, A319, A320 
and A321, and to some degree the A330 and A340, all handle very similarly, 
simplifying pilot training and currency. The system can presumably also fly 
more precisely than a pilot, which may lead to increased efficiency because 
of fewer unnecessary control surface deflections or imperfect trim. Finally, 
you might be able to build a lighter structure, because the system can actively 
compensate for gusts and turbulence, reducing the load on the physical air-
frame―search for “aileron waltz” on YouTube for a nice demonstration of 
this on the A380. In 2014 I chatted with Reinhard Reichel, professor for air-
craft systems at the University of Stuttgart and an expert in fly-by-wire sys-
tems, who has a deep knowledge of the A320 flight control system. In the 
following I will give you a sense of how the A320 flight system works and how 
it has been engineered to be reliable and safe. 

The design of a fly-by-wire system is an exercise in systems engineering, in-
volving hardware, electronics and software. Engineers start out by capturing 
the requirements that describe the intended functionality of the system, as 
well as its quality attributes. A particularly important quality attribute is reli-
ability, which in turn can be broken down into safety and availability. Safety 
means that the system does not produce any erroneous, dangerous behaviors 
(such as fully deflecting the rudder during high-speed flight). Availability 
means that it is extremely unlikely that the system fails to provide its func-
tionality. For commercial airliners, the European Air Safety Agency’s CS-25 

certification specification requires a reliability of 106 for an aircraft as a 
whole. This means that a fatal accident is acceptable once per million flying 
hours. This number governs the design of the flight control system. Reinhard 

Reichel summarized the challenge as follows. CS-25 requires 106. The pilot 
is statistically responsible for 80% of accidents, the structure for 10%, so there 
are around 10% remaining for all other critical systems. Taken together, they 
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can therefore only fail once in every 107 flight hours. The aircraft has around 
100 critical systems: one of them is the flight control system. This means that 
the flight control system has to achieve a reliability of no more than one fail-

ure in 109 flying hours. However, many of the components, such as the com-
puters, have a much lower reliability: 104 is typical. So the challenge of engi-
neering the flight control system is to assemble a system that achieves a reli-

ability of one failure in 109 hours from components that individually have a 
much lower reliability. To understand how this is achieved, we have to zoom 
out a little bit. 

System engineers work a lot with models. A model is an abstracted, simpli-
fied, less-detailed representation of a system that supports analytic methods 
that make reliable predictions about the real system: we will discuss models 
much more in the next chapter. Maybe the most important model is the func-
tional model, in which a system is hierarchically broken down into subsystems 
and the interactions between these subsystems are captured. The following 
representation resembles block diagrams that are found in many systems en-
gineering modeling languages, and in particular SysML.  

 

 
 

The system shows three functions: the stick, operated by the pilot, the flight 
control law computation, which takes the pilot’s input and determines which 
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control surfaces to deflect and by how much, as well as one of these control 
surfaces, an aileron. The flight law computation tells the aileron by how 
much to deflect and receives feedback from the aileron about its actual de-
flection. It then runs a control loop to keep the aileron at the angle that it 
wants it to be based on the stick position (and lots of other sensor inputs that 
we will ignore here). The flight law considers the aileron as a black box: com-
manded deflection in, actual angle out. But the aileron system is itself built 
from several subsystems: the electrical deflection request arrives at a valve 
that opens or closes according to the received command. This allows oil into 
the actuator, which then puts pressure on the actual surface, which then 
moves. An independent sensor measures the angle of the surface and reports 
it back to the flight law (indirectly―the actuator law is a separate system). 
For the engineer who designs the flight law, the aileron is a black box. But 
for the engineer who designs the aileron, it is a whole (potentially complex) 
subsystem in its own right. This hierarchical decomposition is crucial to being 
able to understand and design complex systems. 

The various subsystems exchange data. For example, the flight law compu-
tation sends a deflection request to the aileron and the aileron sends the meas-
ured angle back. In early stages of system design this level of precision is 
enough to allocate basic responsibilities to subsystems (and recursively, to 
their sub-subsystems). But as we make progress in the design we have to be-
come much more precise: is the angle in degrees or radians? What is the valid 
range? How many decimal digits? What is the error in each value? Once we 
think about representing these values in software we have to decide how to 
encode them. Let’s say the angle is a value between –30.00 and +30.00 de-
grees. Should we encode this as a floating point number or as 16-bit integer, 
multiplied by 100, as a range between –3,000 and +3,000? Finally, we will 
have to define how often a new value must be sent. This is very important: if 
the rate is too low the control algorithm might not be able to run at the re-
quired precision, and if the rate is unexpectedly high the receiver might be 
overloaded, for example because data buffers could fill up too quickly. The 
documents that capture all of this are called interface descriptions. They 
might be just words initially, but as the system design progresses they are 
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expressed precisely in various modeling or programming languages. Inter-
faces are agreed on by the producer(s) and consumer(s) of signals. Conceptu-
ally they are then attached to ports: ports are the “connection points” of the 
boxes that represent the functions in the diagram above. Two ports can only 
be connected if they have the same interface, to ensure that both data pro-
ducer and consumer have the same understanding about the data they must 
exchange. The notion of an interface also extends to the physical world; in 
this case they do not specify the exchange of data, but the exchange/flow of 
heat or materials or forces. 

Clear, unambiguous and agreed interfaces are the first ingredient for building 
a reliable system. They avoid any number of errors from “misunderstand-
ings”, and they also help with finding problems during integration testing. 
For example, if we specify the rate at which the flight law is able to receive 
and process the angle signal, we can monitor this rate as the system runs. If 
the rate is too high or too low, we can log an error that specifically indicates 
this problem. If we didn’t do this we’d eventually see the flight control be-
come less accurate due to reduced algorithmic precision because the signal is 
not received at the minimum rate, or fail entirely because the input buffer 
overflows and the program crashes. The more specific log entries are about 
their root cause, the easier it is to fix the problem. A crash, and even an over-
flowing buffer, can result from all kinds of problems. 

We can also detect flaws in the functioning of the aileron; if the aileron re-
ports an angle that is outside the –30/+30 degree range, something must be 
wrong. Here it is not obvious what the root cause is, but we know that some-
thing is wrong with the aileron. This approach is known as plausibility check-
ing. The flight law computation could detect this, because it is a consumer of 
the angle signal produced by the aileron. There are also more advanced 
forms of plausibility checking. For example, one could say that, if the valve is 
opened and the sensor does not detect a change in the angle of the surface 
after some specified time delay, then something must be wrong. In fact the 
A320 flight control system runs a model of how the surface is supposed to 
behave as a consequence of the valve opening, and if the surface behaves 
differently it constitutes a fault. If this kind of plausibility checking were to 
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run inside the aileron function, then the aileron would have to report an ad-
ditional signal back to the flight law computation that reports its “valid” status 
to notify the flight law computation of the failure of the aileron subsystem.  

The flight control system in the F-16 works similarly. Jan explains: “If the 
four channels of the flight control computer don’t return the same flight con-
trol command for a given set of inputs, it will filter out the offending channel 
and pick the control deflections the other three channels calculated. If the 
flight control system is unable to do that, then it will lock out the affected 
servo actuator and give me reduced flight control authority around that axis 
until I can verify that the control system isn’t somehow getting invalid data 
from the air data computer. If I can isolate the sensor that’s feeding incorrect 
data to the air data computer, I can then reset the appropriate actuator and 
continue my mission. If not, I may have to terminate the mission and try to 
land with degraded flight controls around that axis, which the flight control 
system can partly compensate for with the remaining flight control surfaces 
and the trim.” 

Now let’s look at different kinds of faults. A fault might happen spuriously 
and then disappear: a bit flip caused by solar radiation is an example. Such 
faults do not necessarily indicate a problem with the design or construction 
of the system, but the system has to be able to cope with them nevertheless. 
The classical approach to detecting such errors is to use a checksum: for a 
four-digit number XXXX you compute an additional value Y from the digits 
and append it to the number, XXXXY. The receiver performs the same 
computation from the received digits X’X’X’X’, and if one has changed (be-
cause of a bit flip or any other reason) the checksum will be different and 
won’t match the one received with the number. To “fix” the fault you just try 
again, and very likely the problem will disappear.  

Then there are faults that result from wear or because a mechanical part is 
not strong enough. Importantly, these kinds of faults become more likely as 
the system ages. For a system to be able to function in the face of such faults, 
critical components are either significantly over-designed, closely and regu-
larly inspected over the lifetime of the system, or they are installed more than 
once. For example, in the A320 there are in fact two actuators for each ai-
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leron, so that if one fails the other can take over. A third kind of fault is sys-
tematic, which means that it always occurs if a particular condition is met. 
Such faults often occur in software and are usually a design or implementa-
tion error. For example, the internal model of the control surface might ex-
pect the aileron to react faster to an opening valve than it actually does and 
report an (invalid) error, for example at high speed. Finally, there are logic 
errors where the system correctly does what it was programmed to do, but 
that program specified inappropriate or unsafe behaviors. Such a logic error 
was partially to blame for the accident to Lufthansa Flight 2904 when landing 
in Warsaw, which overshot the runway in poor weather. Consider this para-
graph from the accident report: 

The aircraft automatics comprises, for basic landing configuration if 
the aircraft (i.e. with flaps extended to FULL position), the programme 
which subjects actuation of all braking devices to some specific condi-
tions. Ground spoilers, when selected, will extend provided that either 
shock absorbers are compressed at both main landing gears (the mini-
mum load to compress one shock absorber being 6300 kgs), or wheel 
speed are above 72 kts at both main landing gears. Engine reversers, 
when selected, will deploy provided that shock absorbers are compressed 
at both main landing gears. Such a logic results in the lack of possibility 
of immediate actuation of two mentioned above aircraft’s braking de-
vices without meeting the conditions described. 

While mistakes by the crew also contributed to the accident, the aircraft’s 
logic that determines when it is considered to be on the ground, and that 
therefore brakes and ground spoilers are allowed, was partially to blame: ba-
sically, a bumpy landing and hydroplaning “confused” the system. As a con-
sequence of this accident, Airbus issued a software update that changed the 
required weight from 6.3 tons to only 2 tons. Preventing these kinds of faults 
is extremely hard: essentially they are a result of failure to anticipate the con-
ditions during landing correctly. Testing helps, but you still have to test in 
conditions where the fault reveals itself. In the case of Flight 2904 the system 
did exactly what it was designed to do―it’s just that it was designed to do 
the wrong thing.  

We can now return to the CS-25 requirement of a reliability of 107. Systems 
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engineers will assign reliability factors to each of the sub(sub(sub))systems. 
The respective factors have to be justified either by experiment, long-term 
experience or through a fault-tree analysis that mathematically derives the 
reliability. Let’s look at our aileron again. Say the actuator fails. The rest of 
the aileron cannot compensate for this; there’s nothing it can do to keep the 
surface moving. To make it more reliable, we can use redundancy and add 
another actuator that can take over if the first one fails. Assuming an actuator 
fails with some probability PA, then the probability of both failing is PA * PA. 
Since probabilities are numbers between zero and one, this product is smaller 
than the original PA: that is, the probability of two actuators failing at the 
same time is lower. However, for this to be true, the failures of the two actu-
ators must be independent. For mechanical systems this assumption is usually 
valid, but if they for example get their hydraulic pressure from a single supply, 
they suddenly have a common failure mode if the hydraulic system fails. Fi-
nally, the assumption requires that a failing actuator does not prevent the 
other one from performing its job by blocking the control surface.  

So how does the A320 do it? It indeed has two aileron actuators, but they are 
supplied by two independent hydraulic systems. Each actuator has an over-
ride valve that connects the two chambers of the cylinder to each other, en-
suring that a failing actuator cannot block the other from taking over. That 
valve is commanded through a separate signal. It is similar in the F-16. Jan: 
“Two channels of the flight control computer control one set of actuators, 
and two channels control the other. At the same time, the actuator is actually 
comparing the inputs from both opposing channels, and locking out the ac-
tuator as described before. Getting a servo actuator warning light is actually 
relatively common when ‘assaulting the aerodynamic limiters’, such as in a 
visual fight at high g.”  

We can now see how redundancy in the aileron subsystem helps us build a 
reliable system (the aileron) from components that do not have the required 
reliability (the actuators). In this case it was local component redundancy: we 
simply duplicated a component. When designing an aircraft, however, re-
dundancy must be seen relative to the capabilities of the system and its overall 
reliability. This is beneficial, because it has the potential to increase reliability 
without too many additional components (which add weight, complexity and 
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maintenance effort). This can be nicely illustrated with roll control. Roll con-
trol is a capability provided by the flight control system, but it cannot just be 
realized through ailerons; it can also be realized using the spoilers. These are 
a bit less efficient, but the A320 can tolerate the failure of an aileron because 
it can compensate with the spoilers. The flight law computation, when de-
tecting a fault in an aileron, will automatically fail-over to the spoilers. They 
are mechanically independent and have no common mechanical failure 
modes. As we will see, ailerons and spoilers are also controlled by different 
computers, another ingredient to overall system reliability.  

Software does not only have logic errors such as those that lead to the crash 
of Lufthansa Flight 2904: the underlying computer hardware might have its 
own low-level logic errors, or the compilers that generate the machine code 
from high-level programming languages might have errors. To avoid fatal 
effects from such errors, dissimilarity is used: redundant computers that have 
the same responsibilities don’t use the same hardware architecture, program-
ming language or compiler. This avoids common failure modes that might 
otherwise result from low-level logic errors in the hardware or compiler. This 
principle is used in all the computers in the A320’s fly-by-wire system. In total 
the system has five full-authority computers that control pitch, roll and yaw, 
all of them active all the time. They perform both the flight law computation 
as well as control of the actuators; there are no dedicated actuator control 
electronics. There is enough redundancy in the system to provide full func-
tionality if one computer fails, and safe operation of the aircraft is possible 
even with only one computer working. However, the system degrades in steps 
between the two extremes of full and minimum functionality, as we will see 
below. In the A320 there is also mechanical backup for trimming the hori-
zontal stabilizer and controlling the rudder; it has since been replaced by an 
independent electrical system in the newer A330/A340 family. However, the 
intention here is only to stabilize the aircraft while the computers are re-
started in an emergency; landing with only the mechanical systems is not part 
of the requirements, even though some airlines try it at least once as part of 
the type rating syllabus―in a simulator, of course. 

The five computers are comprised of two ELACs (elevator and aileron com-
puters) and three SECs (spoiler and elevator computers). Notice how ELAC 
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and SEC overlap in the sense that they can both control the elevators. How-
ever, they are distinct in control of ailerons and spoilers but, as we have seen 
above, these back each other up to some degree. For dissimilarity the ELACs 
are based on 68010 processors and the SECs on 80186s. These are produced 
by different companies, and a total of four different architectures are used for 
the software running on the computers. There are three independent hydrau-
lic systems and two independent electrical buses, as well as three identical air 
data computers that measure AoA, sideslip and speed, plus a number of atti-
tude parameters. The number three is not coincidental: the five central com-
puters consume the data from all three air data computers. If the data from 
one of them differs from that from the other two, it is deemed unreliable and 
ignored. This kind of majority voting is a common strategy for deciding on 
the correct data values among multiply redundant data sources. 

To increase the reliability of each of the five computers, each consists inter-
nally of two channels. These are implemented with two identical computers 
that perform the same computations in parallel: one commanding, the other 
monitoring. The monitoring computer compares the results of each compu-
tation with the other channel’s results, and if they diverge beyond a prede-
fined threshold this constitutes a failure of the overall computer. It would then 
report the problem, stop its work and electrically disconnect itself from the 
system. The other ELAC, or eventually, one of the SECs, takes over. The 
two channels use the same hardware architecture but different software. 

Let’s look at the degradation in functionality that I mentioned above. The 
flight control system provides three different flight control laws. In accord-
ance with the two main reasons for using fly-by-wire systems, each law pro-
vides a particular set of flight characteristics and protections. If all computers 
are operational, the A320 operates in normal law. The aircraft is flight path-
stabilized: the system provides stability in the sense that, with the stick at neu-
tral, the aircraft retains its current flight path; it controls for 1 g, or the ab-
sence of any acceleration (this is true only up to a point: if a divergence is 
large enough pilot input will be required―it’s not an autopilot attitude-hold 
mode). The pilot’s stick input governs the first derivative of the flight path. 
Pulling the stick requests a particular load (g-level). Deflecting the stick to the 
right rolls the aircraft to the right with a roll rate that is proportional to the 
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deflection; full deflection results in a 15 degree/second roll rate. Importantly, 
the mapping from stick deflection to load factor or roll rate is independent of 
speed, which makes the A320 quite different than a conventional aircraft. 
The roll behavior changes at 33 degrees bank, however: instead of controlling 
the roll rate, the stick now controls the roll angle. As with the steering wheel 
of a car, the stick has to be kept deflected to continue a turn of more than 33 
degrees. The intention behind this behavioral change is to make the pilot 
“force” the aircraft into such a tight turn. Bank angles of more than 67 de-
grees are not possible―the law protects against overly steep turns. Pilots can 
also ignore the rudder pedals in normal law, because the law automatically 
applies the right amount of rudder to fly a coordinated turn for the com-
manded bank angle. It also does not allow flying with more than 30 degrees 
of nose-up pitch or 15 degrees nose-down, protects against overspeed and 
limits the AoA to what the wings can do. The system is quite invasive: it will 
automatically add power and/or push the nose down to keep the aircraft safe. 
Finally, it also protects against over-stressing the airframe: it won’t permit 
more than +2.5 g or less than –1.0 g. 

If subsystems start to fail, the flight control system performs a stepwise deg-
radation to simpler laws. Let’s say that both ELACs fail and the SECs take 
over. Since these have less computing power, simpler control laws are used. 
If the air data computers fail to provide data reliably, then the automatic 
flight path stabilization can no longer work and the system degrades. The 
specific rules that govern when which law will be engaged depend on the 
specific failures, but generally at least two failures are required in either com-
puters, hydraulics or sensor systems for normal law to become unavailable. 

Let’s briefly look at the two simpler laws. The first is called alternate law. In 
pitch, the stick continues to express a load factor demand, but in roll there is 
a (virtual) direct stick-to-surface connection; it basically commands a non-
stabilized roll rate. There’s no more turn coordination and pilots have to use 
their feet. There are also fewer protections: over-stress protection remains 
active but AoA protection is gone, and so is the 67-degree maximum bank 
angle limit. “Direct” law is the final degradation step: the computers do not 
modify any of the pilot’s commands, there are no more protections, and it’s 
back to manual flying in every respect.  
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There are many more details. For example, normal law has a ground mode 
that provides a direct stick-to-surface connection. This is to allow pilots to 
perform checks of the controls and rotate the aircraft during takeoff. There’s 
also a landing mode: at 50 feet above ground the ELACs memorize the pitch 
attitude; at 30 feet they add a little nose-down to the memorized pitch atti-
tude, which the pilot then compensates by pulling on the stick. This is sup-
posed to make the aircraft feel more conventional during flare, the final part 
of a landing, when pilots are used to pulling on the stick. Finally there is also 
an abnormal attitude law: if the aircraft leaves its protected performance en-
velope, for example because of severe turbulence, abnormal law stabilizes its 
attitude but without most of the protections. This is designed to make sure 
that the computers never prevent the pilots from recovering from an abnor-
mal attitude. 

Remember our bref discussion of parabolic flight earlier? After injection, the 
pilots control the aircraft manually to maintain exactly 0 g. I asked chief pilot 
Eric what they plan to do once they have to replace their A310 with some-
thing newer, probably something that has a fly-by-wire control system. He 
said that they tried parabolic flights with an A380 together with Airbus, “and 
it worked”. I assume they used basic law, because the others would no allow 
such a maneuver. He also said that, in principle, because Airbus’ flight con-
trol system works to maintain 1 g when there are no pilot inputs, one would 
just have to replace 1 g with 0 g in the control loop: “You’d pull up to 50 
degrees pitch and then just press a button that engages the 0 g law and the 
system would automatically control for a 0 g trajectory.” He added that one 
would have to remove and adapt all kinds of protections, but in principle, he 
suggested, the architecture of the flight control system should allow such a 
modification with acceptable effort. 

So what exactly is a “law”? We have already said that a law governs how the 
pilot’s inputs are translated into attitude changes and which protections are 
available. But how does it do that? The best way to summarize it is that the 
flight law contains a mathematical model of the ideal airplane. When the 
pilot makes a control input, the attitude of the model is changed based on 
how the aircraft should behave, and the initial deflections of the control sur-
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faces are determined by predictions based on that model. There is also a rep-
resentation of the actual attitude of the aircraft. When the two differ (as they 
will initially when the pilot makes a control input), the control algorithm tries 
to align the real aircraft with the model. It uses the available control surfaces 
to do so―for example, aileron and spoilers if everything works, or just the 
spoilers if an aileron has failed. This also explains why the system degrades 
to simpler laws if air data computers or attitude sensors fail: the computer 
does not have a trusted representation of the aircraft’s current state, so it can-
not reliably use the control surfaces to “align” the real world with the model. 

 

 
 

The aircraft has many more computers than ELACs and SECs. There are 
the flight control data concentrators (FCDCs) that acquire data from the pri-
mary computers so that they can be logged and shown to the pilots. There is 
also the electronic centralized aircraft monitor, or ECAM, a system that 
monitors the health of aircraft functions and communicates them to pilots; 
an independent monitoring infrastructure is an additional means of achieving 
reliability. There is a whole set of computers in the flight management and 
guidance system (FMGS) which, among other functions, is also home to the 
autopilots. Two more systems, the flight augmentation computers (FACs), 
deal with the flying itself: they control yaw damping, turn coordination and 
rudder trim, and also compute minimum and maximum speeds and handle 
AoA protection. Because all of their functionality is optional, however, they 
are not part of the core reliability architecture.  

To summarize, the diagram below shows the final architecture. Stick and 
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pedals feed into the ELACs, which control the ailerons and elevators. They 
also uses the spoilers to help with roll, which is why they send roll orders to 
the SEC. To fly nicely coordinated turns, the ELACs send yaw orders to the 
FACs. To build an accurate picture of the aircraft’s attitude and flight path 
that is crucial for the flight laws, the ELACs receive air data and data from 
the inertial reference unit (ADIRU), slats and flaps (SFCC), accelerometers 
(ACC), landing gear (LGICU) and the radio altimeter (R-ALT). If the ELACs 
fail, the SECs take over. The ailerons are then dead, but the aircraft can roll 
with its spoilers. Note that the SECs cannot pass yaw orders to the FACs, so 
the rudder becomes inactive. However, spoilers also provide a yawing mo-
ment, so the missing rudder is not a huge problem; also, the mechanical link-
age is still there. Both the ELACs and the SECs can talk to the elevator and 
the trimmable horizontal stabilizer (THS). 
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Even though they are not essential, a failure of both FACs has significant 
consequences and the flight law will degrade to alternate. The AoA protec-
tions are lost and speed is limited due to loss of high-speed protections and 
the yaw damper. The rudder travel limiter may be stuck in the wrong place, 
so the rudder must be used with care. During landing, control automatically 
reverts into direct law, because alternate law does not provide the landing 
mode mentioned above. Here’s what the ECAM will show the pilots:  

 

 
 

Let me very briefly revisit the discussion about pilots not getting enough man-
ual flying practice. As I said earlier, this discussion concerns higher-level au-
tomation such as autopilots and flight management systems more. These are 
also available in traditionally controlled aircraft. However, there is a connec-
tion to fly-by-wire control. The “virtual aircraft” represented by the normal 
law of the A320 is simpler to fly manually than the unprotected, direct-law 
physical aircraft. If a pilot who is used to lots of automation and at most flies 
the virtual aircraft is suddenly forced by system failures to fly manually in 
direct law, I do think that this might introduce a risk.  

Let’s revisit the Swiss cheese model. The loss of an A330 performing flight 
Air France 447 over the Atlantic, in which 228 people lost their lives, can be 
attributed to (1) the icing of pitot tubes, which invalidated the airspeed signal, 
(2) the autopilot switching off and the flight control system switching to alter-
nate law, (3) a misunderstanding of the situation by the pilots, who basically 
pulled the stick back until the aircraft stalled, then ignored the stall warning, 
(4) the pilots not sticking to the predefined procedures for loss of airspeed 
indication, and (5) the problem that the two pilot and copilot’s sticks don’t 
move together, so it was hard for the pilot who was not in control of the 
aircraft to realize that the pilot who was flying it was pulling continuously on 
his stick. This account of the causes is slightly simplified, but the resulting 
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accident was definitely a combination of strange, unintuitive and suboptimal 
system behavior together with the pilots making mistakes. An initially similar 
problem occurred with an A320 over Spain where two of the three angle-of-
attack sensors reported faulty values because of icing―the flight control sys-
tem followed its algorithm and voted 2:1 against the remaining good one! 
Because the two sensors were stuck at around 4.5 degrees, the angle-of-attack 
protection kicked in and tried to lower the nose. Since the sensors still re-
ported an unchanging high AoA, the flight control system pushed more and 
more, forcing the aircraft into a descent. The pilots, together with technicians 
on the ground, understood the problem, switched off the air data computers 
and flew the aircraft home manually in alternate law. The holes in the cheese 
didn’t align in this case. 

 ~   ~   ~ 

Safe Software.  Let’s conclude our discussion of how to make a fly-by-wire 
system reliable with a brief look at how one builds reliable software. There 
are two ingredients: verification and validation. Verification is about ensuring 
that the software behaves exactly as specified (nothing less, nothing more). 
For example, ensuring that buffers never overrun if a sender of data stays 
below its maximum sending rate and the receiver takes data out of the buffer 
at its minimum guaranteed processing rate is an example of verification. This 
is very different from validation, which is about ensuring that those behaviors 
are appropriate with regard to the real world. The problem of detecting the 
“on ground” state by Lufthansa Flight 2904 was a validation failure. 

Consider the following diagram, which represents what software engineers 
call a “state machine”. This captures various states of the aircraft (the ellip-
ses), as well as the conditions under which the aircraft transitions from one 
state to another (the arrows). The boxes also contain actions, denoting things 
that happen when the system enters that particular state. Note that this is just 
a simple example, not at all an attempt at replicating actual logic from the 
A320. However, state machines and the verification and validation tech-
niques we discuss below are used in the development of flight control soft-
ware. 
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Let’s walk through the diagram. Initially we are in the Airborne state, flying 
straight and level. If we now extend the flight spoilers while keeping the gear 
up, we go to the Descending state. If the spoilers are retracted (no longer 
extended) we are back to Airborne. If we extend the flaps in either of these 
two states, we move to the Approaching state. If we get lower than 3,000 feet 
above ground with the landing gear not down, we go into a GearWarning 
state and sound an alarm. The alarm stops when we extend the gear. Below 
100 feet we enter the LowApproach state, in which the flight law’s Landing 
mode is activated. Once we detect weight on wheels we enter the state Run-
wayContact; this allows the pilots to extend the ground spoilers. When we 
detect a load of more than 2 tons on the wheels and they have spun up to at 
least 70 knots, we decide we are FirmlyOnGround, engage auto braking and 
allow the thrust reversers to be used. Finally, we detect a GoAround if altitude 
increases and the engines are in full thrust. 

How can we ensure that this state machine is correct? We essentially have 
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two tasks. We first have to validate that the state machine expresses the cor-
rect behavior―that we actually want the aircraft to behave as the state ma-
chine prescribes. Then we have to verify that the software program that im-
plements this machine behaves exactly as the model says. Let’s start with val-
idation. How can we do this?  

First we can manually review it. For example, by looking closely at the dia-
gram we might notice that if we do not extend the flaps (maybe they have 
failed and we cannot extend them) we never enter the Approaching state, so 
we will not get a gear warning below 3,000 feet! Or we might notice that 
extending the spoilers might not result in descent, but just in a slowdown (if 
we pull on the stick enough). However, this manual inspection is really tough 
once this sort of model becomes realistically complex. 

The next best thing we can do is test it. We can “exercise” the model by 
scripting an execution, checking that the model reacts correctly based on the 
requirements provided by people who have an understanding of how the sys-
tem should behave in particular scenarios. The following is an example that 
assures that we get a gear warning at 2,500 feet.  

 

 
  

Ideally tests are scripted once and then run automatically whenever we 
change something in the state machine model; this is to ensure we don’t ac-
cidentally break previously valid behaviors. But we still have to “manually” 
think of all relevant test scenarios, and it is easy to forget corner cases. Think 
of LH 2904: to catch the fault condition, we would have had to write a test 
that used less than 6 tons of wheel loading. That might be hard to think of, 
especially if you are the engineer who has just decided that you will always 
have at least 7 tons, and so a threshold of 6 tons is correct.  

Can we do better than test? Yes. For example, we can write down invariants. 
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These are Boolean conditions that must always be true. Here are two exam-
ples; the X => Y arrow represents implication, which says that if X is true, 
then Y must also be true, otherwise we don’t care. 

 

 
 

The first invariant expresses the fact that, unless we have weight on both 
wheels, we are not allowed to use reverse thrust. The second says that we will 
get an alarm whenever the altitude is less than 3,000 feet and the gear is up. 
The third is especially interesting. It says that if reverse thrust is active, the 
altitude must be 0 (that is, it is only allowed on the ground). It also says that 
the speed must become zero eventually: AF(c) implies that for all (A) possible 
executions and branchings of the machine, in some future (F) state the con-
dition c becomes true. AF is an example of a temporal operator, one that lets 
us express invariants that involve the execution of the state machine over 
time. There are many others; for example, we could express that, once the 
reversers are deployed, for all future states they have to stay deployed until 
(U) speed is zero:  

 

 
 

Now that we have stated these invariants, what can we do with them? One 
thing we can do is to check them during tests. So whatever test scenario we 
run, we also check the invariants; if any fail, the test fails. In this way we can 
hopefully detect unexpected behaviors even though we didn’t write a test that 
specifically checked for them.  

However, we can do better than this by using a technique called model check-
ing, which uses software tools to analyze the state machine model and tries 
to to prove that the invariants hold for every possible execution of the ma-
chine. If the tool cannot find that proof it shows us an example execution of 
the machine where an invariant does not hold; this will hopefully help us to 
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fix the machine. Model checking is interesting, because it frees us from having 
to manually write tests that cover all possible (and/or relevant) executions of 
the system. On the other hand, we still have to come up with the invariants. 
Both testing and model checking rely on complete requirements and on the 
engineers’ correct understanding of them. In practice a combination of re-
views, testing and model checking is used, and more. For example, ensuring 
that tests are written by people other than those who designed the state ma-
chine in the first place, to ensure that they throw “nasty” tests at the machine. 

Now that we have validated the model, how can we ensure that the actual 
software, written in C/C++, Ada or Rust, implements this model faithfully? 
The mapping from the model to the code is often non-trivial because, in ad-
dition to behaving identically in terms of the logic, the code also has to be fast 
enough to fit into the constraints demanded by a realtime control system. 
Developers also have to care about memory management, buffer sizes, inte-
ger overflows, concurrent executions of parts of the program and many other 
low-level issues that are not relevant for the behavior expressed in the model. 

So what can we do? We can for example generate code from the model au-
tomatically. Assuming that the model is correct, and assuming the code gen-
erator does not make any mistakes, we will get a faithful implementation. But 
the assumption that the code generator will not make mistakes is a big one. 
We have moved our problem from verifying a particular model to validating 
and verifying the code generator. There are tools, however, that have been 
proven to be correct; Esterel’s SCADE is an example. As far as I know 
SCADE is used for flight control software at Airbus. Another approach is to 
run the set of tests written for the model against the code as well, to check 
that the code behaves in the same way. We can also use software tools to 
extract tests from the model automatically and run them against the code. 
Finally, there are tools that allow the equivalent of model checking on the 
level of the program code. We will look further at the relationships of model 
and implementation code in the Models chapter. 
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